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Abstract— In this paper, the authors aimed to propose novel deep learning-based HAR systems with a single wrist IMU sensor. This research
used time-series activity data from only one IMU sensor at a wrist to build two deep learning algorithm-based HAR systems: one is based on Con-
volutional Neural Nets (CNN) and the other Recurrent Neural Nets (RNN). Our two HAR systems are evaluated by 5-fold cross-validation tests to
compare the performance of both systems. Five primary daily activities, including standing, walking, running, walking downstairs, and walking
upstairs, were recognized. Our results show that the CNN-based HAR system achieved an average accuracy of 95.43% and the RNN-based HAR
system accuracy of 96.95%. This result presents the feasibility of HAR for some macro human activities with only a single wearable IMU device.
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I. INTRODUCTION

HAR opens new opportunities to personalized life care and health-
care services, since daily activity logs (i.e., lifelogs) of a person can provide
information of personal behaviors and patterns. A HAR system requires
two key components: smart sensors and pattern recognition techniques.
Recently, IMUs are readily available inside smart phones, smart bands, and
smart watches. With IMUs, human movements or activities can be trans-
lated into information of acceleration via accelerometer and angles via gy-
roscope. Recent works utilizing IMUs for HAR can be found in [1], [2], [3].
In these studies, multiple IMUs, positioned in different body parts (espe-
cially waist, lower limbs, and upper limbs), are used for HAR. Although de-
ploying multiple sensors increases the accuracy of HAR, this approach is
impractical and inconvenient to users due to multiple sensor deployment.
For making HAR practical, a single IMU is preferred in some common body
areas (i.e., wrist, waist, or ankle). This constitutes a need to develop a HAR
system using a single IMU embedded in a smart watch or smart band to be
accepted by general users.

In [4], performed HAR with a pair of wrist sensors performing an
evaluation of different classification methods for activity recognition and
fall detection. They made a comparison between performances of recog-
nition using information from the right and left wrist. They applied tradi-
tional classifiers such as decision tree and Support Vector Machines over
some selected features as input. They concluded that the left wrist sensor
is more informative than the dominant right one: accuracy of 72% from
the left wrist vs. accuracy of 68% from the right. Till now, most studies
use multiple sensors [5]. Regarding, pattern recognition techniques, most
studies utilize traditional classifiers with handcrafted features [6, 7]. There
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is still a lack of robust system to discern similar human activities.

This work focuses on HAR using a single IMU sensor at one wrist
via deep learning CNN and RNN approaches. We have developed two HAR
systems: one is using CNN and the other RNN. With our developed HAR
systems, five primary daily activities such as walking, standing, running,
walking upstairs and walking downstairs are recognized in this study. In
addition, we evaluate our systems with continuous time series data to test
the feasibility of real-time continuous HAR. The structure of this paper is
organized as follows: Section 2 describes some related works. Section 3
our proposed CNN- and RNN-based HAR systems. In section 4, our experi-
mental results are presented. Section 5 corresponds to discussion section.
Finally, we present the conclusion in Section 6.

II. RELATED WORKS

Deep learning is getting a major attention lately because of its ap-
plicability to various machine learning problems. In fact, it becomes a new
trend in the fields of pattern recognition and machine learning. Deep learn-
ing approaches are proven to overcome traditional classifiers in many ap-
plications. Also, deep learning performs an unsupervised feature extrac-
tion, saving time and computation resources used in feature extraction and
selection. In the work of [7], they compared traditional machine learn-
ing techniques such as Naive Bayes, K-Nearest Neighbors (KNN), Decision
Tree, and Support Vector Machines (SVMs) to CNN for HAR with two IMUs
at both wrists. Their results showed that CNN outperformed in activity
recognition the traditional machine learning algorithms. In the work of
[8], they tested a CNN-based approach in two different data sets: one com-
pound of multiple body-worn sensors including accelerometer and gyro-
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scopes located in some parts of the body such as waist and upper limbs
for HAR and the other database for hand gestures. Again, CNN was tested
against some conventional approaches of SVM, KNN, and Deep Belief Net-
work (DBN) and CNN achieved better HAR.

There are some works in which recurrent neural nets are used
in the HAR systems. We can mention [5] in their work report the per-
formance using RNN. They proposed a generic deep framework for HAR
based on Long Short Term Memory (LSTM) using a full set of body-worn
sensors. Their results showed RNN produced better recognition than CNN
and better classification decisions between similar activities such as open
and close door. In the work of Shin et al. [9], they developed two dy-
namic hand gesture recognition techniques: one using QVGA images from
the Cambridge-Gesture database [10], and the other using accelerometer
signals from the smart watch gestures database [11]. Both models were
implemented with simple RNN.

Most deep learning approaches show that they can outperform
traditional classifiers for better HAR. However, most of these studies em-
ployed multiple sensors till now. Therefore, it remains a challenge to de-
velop a robust HAR system using a single sensor via deep learning ap-
proaches.

III. METHODS

This section presents our CNN- and RNN-based HAR systems. As
aforementioned, only one IMU including one tri-axial accelerometer and
one tri-axial gyroscope was attached at dominant wrist.

A. Our Proposed CNN-Based HAR System

CNN is a feed forward neural network that involves the use of a
convolutional operation in at least one of their layers [12]. In general, a
basic CNN architecture involves a combination of different layers like con-
volutional, subsampling, and fully connected. In the convolutional layer,
a mathematical operation (i.e., convolution) applies a set of local filters
(or kernels) to obtain the most representative features. After the convo-
lution operation, a bias is added to the result and an activation function
generates the output for this layer. Subsampling or pooling operations
reduce data size by reducing the dimension of the input using an average
or maxing filter. The fully connected layer is applied at the end, combining
all features' maps obtained by the previous steps and using it as input
for a classification layer. This hierarchical organization generates classi-
fication results, where the lower layers obtain local dependencies of the
input and the higher layers obtain high level representation of the data.
Input for the proposed CNN-based HAR system is one-dimensional block-
wise segments (i.e., epochs) extracted from accelerometer and gyroscope
signals. Our proposed architecture captures epochs from multi-channel
time series: The CNN architecture was changed to work with multichan-
nel time series as input and the architecture of convolutional kernels and
pooling kernels were modified to work in one dimension. Our proposed
architecture for the CNN-based HAR uses five convolutional layers. The
corresponding filter sizes include 1x13, 1x13, 1x11, 1x3, and 1x3. The
pooling layers are used after the first and second convolutional layers,
both are of the same dimension of 1x2. The activation function used in
each layer is Rectified Linear Unit (ReLU). At the end, a fully connected
(F1) and a softmax (F2) layers are added as shown in Fig. 1. Once the
architecture was specified, the networks parameters for training were
defined: mini-batch size of 264, learning rate of 6.5e-6, and dropout of 0.5.
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Fig. 1. Architecture of our proposed CNN-based HAR system

B. Our Proposed RNN-Based HAR System

Considering temporal variations in the natural movements of
humans, we utilized RNN to encode these temporal changes. This deep
learning approach has recurrent connections between hidden units: those
connections generate a temporal memory, in which recurrent nets store
the value of previous stage. Giving the opportunity to decide not only de-
pending on the input (as in the case of CNN or other neural network), also
considering the previous stage. In order to avoid the vanishing gradient
problem (i.e., turning slow learning process by vanishing the magnitude of
gradient in time) or exploding gradient, we have used LSTM proposed by
Hochreiter and Schmidhuber [13]. LSTM produces internal paths where
the gradient can flow for long durations: those paths are the structure of
the gates to LSTM. This flavor of LSTM has the following gates: input gates
determine which value is an update; forget gates determine what informa-
tion is throwing away; output gates control what information is going to
be the output of the cell. Fig. 2 shows a single LSTM cell with its internal
connections with Equations (1)~(5) describing operations.
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Fig. 2. LSTM structure

Backpropagation Through Time (BPTT) was used to train the
model, as described [14]. For tuning network parameters, an algorithm
for the first-order gradient-based optimization Adam Optimizer was used
as described in [15]. In Fig. 3, our RNN architecture is shown with 100
LSTM cells, reflecting the length of data in our epochs (i.e., 2 seconds' data
with 50 Hz sampling frequency).

The output comes after the last LSTM cell. We used the learning
rate of 1.5xe-3 and 105 hidden units as the network structure.
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Fig. 3. Architecture of our proposed RNN-based HAR system

IV. EXPERIMENT AND RESULTS

We worked with a public database. Details and general informa-
tion are given in Section A. Training and testing epochs were obtained
by segmenting accelerometer and gyroscope time series signals. Two
methods of validation were used to test the proposed algorithms. First
validation was done by splitting the data 80% for training and 20% for
testing avoiding overlap between them and running five-fold tests. The
second validation was done using the time-series continuous data sets
from one subject. More details are described in the following section.

A. Activity Data Set

We used the Physical Activity Monitoring for Aging People
(PAMAP2) database [16], [17]. This database includes activity informa-
tion of 9 subjects (8 males and 1 female) using three IMUs located at chest,
wrist, and ankle with the sampling frequency of 100Hz. In this work, we
used data from the 16g-scale accelerometer to avoid saturation problems
in activities. There are 12 lifestyle activities including sports activities
such as running and Nordic walking; household activities such as ironing,
vacuum cleaning, walking, etc., and 6 optional activities such as watching
TV, computer work, car driving, folding laundry, house cleaning, and play-
ing soccer. This data set has a total of 8 hours of data collection.

In this study, we used time series data from Subjects 2, 5, 6, 7,
and 8 from the PAMAP2 database to build training and testing data sets.
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We selected five daily activities, which are commonly used in human ac-
tivity recognition: namely, standing, walking, running, walking upstairs,
and walking downstairs. We restricted the information to only a single
IMU (each of tri-axial accelerometer and tri-axial gyroscope) at one wrist.
Time series signals were down sampled to 50 Hz following the suggestions
mentioned in [18] to remove the gravity effect using a high-pass Butter-
worth filter with cutoff frequency of 0.25 Hz.

We took the following actions to obtain training and testing data
epochs: First, a sliding window was used to generate epochs with dura-
tion of 2 seconds. We used 50% overlap in epochs. Then put all channels
together and made a matrix dimension of 6 by 100. Each matrix cor-
responds to a single epoch to train or test the systems. From the total
number of epochs, we split 80% for training and 20% for testing. Table I
shows the number of epochs for each activity.

TABLE |
TOTAL NUMBER OF TRAINING AND TESTING DATA SETS FROM
EPOCH DATA SETS FROM THE PAMAP2 DATABASE

Type of Activity Input Information
Training Testing
Standing 488 122
Walking 1176 294
Running 560 140
Walking Upstairs 512 128
Walking Downstairs 400 100

B. HAR Results with Epoch Activity Data

The recognition results of this test are presented in Tables II and
I1I. The average accuracy of the CNN-based HAR system is 95.43% with a
standard deviation of 0.02. There is some confusion found between walk-
ing upstairs and walking downstairs due to the similarity of the activities.

Table III presents the results of the RNN-based HAR system. Aver-
age accuracy of 96.95% and the standard deviation of 0.76. In this case, the
system has produced similar performance for standing, walking, and run-
ning activities as the CNN-based system. Nevertheless, in the remaining
activities, RNN outperforms convolutional nets.

TABLE I
CONFUSION MATRIX OF HAR VIA OUR CNN-BASED HAR SYSTEM

Type of Activity (%) Model Classification

Stand  Walk Run Walking Upstairs ~ Walking Downstairs
Standing 100 0.00 0.00 0.00 0.00
Walking 0.00 97.29  0.00 1.69 1.02
Running 0.00 0.71 99.29 0.00 0.00
Walking Upstairs 0.00 8.59 0.00 89.84 2.32
Walking Downstairs ~ 0.00 2.97 0.00 10.89 86.14

TABLE III
CONFUSION MATRIX OF HAR VIA OUR RNN-BASED HAR SYSTEM

Type of Activity (%) Model Classification

Stand  Walk Run Walking Upstairs ~ Walking Downstairs
Standing 100 0.00 0.00 0.00 0.00
Walking 0.00 97.08  0.00 2.37 0.54
Running 0.00 0.41 99.43 0.00 0.00
Walking Upstairs 0.00 4.18 0.15 93.33 2.32
Walking Downstairs ~ 0.20 2.57 0.20 3.55 93.46

C. HAR Results with Continuous Activity Data

This test was done using continuous epochs from Subject 7 got

following the same procedure explained earlier in this section. The col-
lected epochs were inputs to the algorithms in the same order as they
were obtained. Label for each epoch was defined by the mode of the
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ground truth labels.

The results of our proposed CNN- and RNN-based HAR systems
are shown in Fig. 4. The recognition accuracy was 79.97% by the CNN-
based system and 88.96% by the RNN-based system.
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Fig. 4. HAR results from the CNN-based and RNN-based HAR systems: The ground-
truth activities (black), by the CNN-based HAR system (red), and by the RNN-
based HAR system (blue). Class 1 represents stand Class 2 walk, Class 3 up-
stairs, Class 4 down-stairs and, Class 5 Run

V. DISCUSSION

Based on the results with the continuous activity data, RNN out-
performs 9% better than 1-D CNN. We consider that this is due to the ca-
pability of RNN better handling the time sequential information of alike
activities such as walking upstairs and downstairs: the recall values (main
diagonal values) for alike activities are 89.84% for walking upstairs and
86.14% for walking downstairs by the CNN-based HAR system whereas
93.33% for walking upstairs and 93.46% for walking downstairs by the
RNN-based HAR system. Lower recall values produce confusion between
alike activities and the remaining activities as shown in Fig. 3.

Finally, Table IV shows the comparisons against other deep learn-
ing approaches. Considering the different sizes of data per classes in
PAMAP, F1-score [3] analysis shows that our CNN- and RNN-based HAR
systems outperform some previous deep learning approaches even with
the use of a single IMU. This result presents a feasibility of HAR for some
macro human activities with only a single wearable IMU device.

TABLE IV
BASELINE COMPARISON
Model F1-Score (%)
DNN [3] 90.40
LSTM-F  [3] 929
CNN [3] 93.7
CNN Our Based HAR system 94.43
RNN Our Based HAR system 96.68

VI. CONCLUSION AND IMPLICATIONS

In this study, we present two deep learning algorithm-based HAR
systems: one is based on CNN, the other RNN. We only used a tri-axial
accelerometer and a tri-axial gyroscope from one IMU positioned at the
dominant wrist. With our HAR systems, daily activities such as standing,
walking, running, walking upstairs, and walking downstairs are recognized
with an overall recognition rate of 95.43% by the CNN system and about
96.95% by the RNN system.
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