
Journal of ICT, Design, Engineering and Technological Science (JITDETS)
VOL. 3, NO. 1, pp. 20-24, 2019

DOI: https://doi.org/10.33150/JITDETS-3.1.5

ORIGINAL CONTRIBUTION
Acceleration of Storage Performance in Cloud Systems by Using NVRAM

Jisun Kim 1, Yunjoo Park 2, Kyungwoon Cho 3, Hyokyung Bahn 4*

1,2,3,4 Department of Computer Science & Engineering, Ewha W. University, Seoul, South Korea

Abstract— Non-Volatile RandomAccessMemory (NVRAM) is anticipated to be utilized as the performance accelerator of future cloud storage
systems. This article aims to analyze how large performance improvement can be expected if we use NVRAM as the performance accelerator of
legacy storage subsystems. Speciϐically, we try to ϐind the best employment of NVRAMwith respect to storage performances. To do so, we quan-
tify the hot storage area and replace it with NVRAM to obtain the best performances. Our analysis shows that the source of hot storage trafϐic
is not limited to any single particular storage area, but it is different for application types executed. Speciϐically, journaling accesses dominate
in database applications, while swapping accesses dominate in memory-intensive applications. In some applications such as video streaming,
ϐile accesses dominate. Based on these ϐindings, we suggest the usage of NVRAM to maximize the performance improvement of cloud storage
systems.

Index Terms— NVRAM, Storage, Cloud System, Cloud Application, Storage Accelerator

Received: 13 April 2019; Accepted: 26 May 2019; Published: 26 June 2019

© 2019 JITDETS. All rights reserved.

I. INTRODUCTION

With the rapid enhancement of NVRAM technologies like PRAM
(phase-change random access memory) and STT-RAM (spin-transfer
torque random access memory) [1, 2, 3, 4], it is expected that NVRAMwill
be used in the memory and storage hierarchies of future cloud servers
[5, 6, 7]. In this article, we perform empirical analysis to see how much
performance improvement can be expected if we supplement NVRAM as
an additional component of cloud storage. Our goal is to optimize the us-
age of NVRAM when it is added to existing storage subsystems. To this
end, we ϐirst see the storage access characteristics of different types of ap-
plications with respect to swapping accesses, journaling accesses, and ϐile
accesses. Note that all storage accesses can be classiϐied into one of these 3
types of accesses. Because these 3 access types occur on separated storage
areas, we can utilize NVRAM as a swapping area, a journaling area, or a ϐile
system area. Due to the high cost of NVRAM, we need to decide which area
of the storage subsystems will consist of NVRAM.

The ϐirst observation of this article is that a bunch of storage ac-
cesses do not happen in the same storage area, but it is different for ap-

plication types executed. For example, journaling accesses dominate in
database applications as transaction handling causes signiϐicant write op-
erations to the journaling area in database systems. On the contrary,
swapping accesses dominate in memory-intensive applications because
the memory size is not sufϐicient to load the full workload of the appli-
cation. For multimedia streaming applications, ϐile accesses dominate as
these kinds of applications need signiϐicant ϐile accesses on multimedia
data.

Our second contribution is the investigation of expected perfor-
mance improvement whenwe supplement NVRAM to different storage ar-
eas. We observed that the largest improvement by using NVRAM does not
happen if we use it as a ϐixed storage area butwe can improve performance
further by utilizing it adaptively for different kinds of applications. For ex-
ample, for memory-intensive applications, we can obtain the best perfor-
mance when we adopt NVRAM as a swapping area. On the contrary, for
database applications, the best performance can be obtained by adopting
NVRAM as a journaling area. For video streaming applications, adopting
NVRAM as a ϐile system area leads to the best performances.

*Corresponding author: Hyokyung Bahn
†Email: bahn@ewha.ac.kr

https://doi.org/10.33150/JITDETS-3.1.5
http://crossmark.crossref.org/dialog/?doi=10.33150/jitdets-3.1.5&domain=pdf
bahn@ewha.ac.kr

21 Journal of ICT, Design, Engineering and Technological Science 2019

Fig. 1. Accessing cloud storage in a local machine.

Although previous studies on NVRAM have been performed, they
focused only on a single usage such as database [8], smartphone [1], jour-
naling [3], swapping [4, 9], or cache media [10, 11]. Unlike these existing
works, this article has a novelty in that it considers various types of appli-
cations and storage layers, and performs optimized adoption of the given
NVRAM storage.

The remaining part of this article is organized as follows. We show
the analysis of application’s storage access characteristics in Section II. Sec-
tion III describes how to obtain the best performances by using NVRAM
with an appropriate management policy. Section IV brieϐly summarizes
previous studies related to this article. Finally, we conclude this article in
Section V.

II. APPLICATION’S STORAGE ACCESS CHARACTERISTICS

Before describing our optimized adoption of NVRAM, we ϐirst an-
alyze the characteristics of application’s storage accesses. To do so, we
extract storage access traces while executing different category of appli-
cations. We split our HDD subsystem into three areas, a swapping area,
a journaling area, and a ϐile system area, and collect storage access traces
separately for observing relative intense of each area. We use the Ext4 ϐile
system, and the traces for journaling area are separately collected from
the ϐile system area by using the external journaling option. In our trace
collection, three application categories are used: a memory-intensive ap-
plication, a database application, and a multimedia streaming application.
Figure 2 shows the number of storage accesses that occur on each storage
area for the three applications. As we see from the ϐigure, a bunch of stor-
age accesses do not appear on a single particular area, but it is different for
application types.

To be speciϐic, swapping accesses dominate in memory-intensive
applications because themainmemory size is not enough to load the entire
workload of the application. On the contrary, journaling accesses dominate
in database applications as database has a sequence of transaction pro-
cessing steps, which makes a large number of storage writes on the jour-

naling area. In case of themultimedia streaming applications, ϐile accesses
dominate as video play services need reading of data from ϐile systems.

III. OPTIMIZED ADOPTION OF NVRAM TO STORAGE

Figure 3 compares the traditional storage architecture with HDD
and the proposed architecture consisting of both HDD and NVRAM. As can
be seen from the ϐigure, NVRAM is used as a part of the storage subsystem
that may be adopted as a swapping area, a journaling area, or a ϐile system
area, based on the application’s storage access characteristics. Since the
size of NVRAM is limited due to the high cost per capacity compared to
HDD, we need to decide the area of the storage subsystems that consists of
NVRAM. Based on the storage access characteristics observed in Section
II, we can predict how large performance improvement can be expected
when we use NVRAM as speciϐic storage functions such as ϐile system,
swapping, and journaling areas. For example, Figure 4 depicts a case that
adopts NVRAM as a ϐile system area located on main memory.

Figure 5 depicts the total storage access latency for executing 3
kinds of applications. As we see from this ϐigure, the best performance
by supplementing NVRAM is not resulted when it is ϐixed as a particular
storage area but is different for application types. Speciϐically, in case of
memory-intensive applications, using NVRAM as a swapping area consis-
tently exhibits good results. Note that we use a graph drawing application
for the memory-intensive application. In case of database applications,
the results contrast for the NVRAM size. In particular, when the size of
NVRAM becomes smaller than 30MB, utilizing NVRAM as a ϐile system
area exhibits the best performances. In contrast, according as the NVRAM
size grows, utilizing NVRAM as a journaling area shows better results,
while utilizing NVRAM as a ϐile system area does not exhibit any more
improvement. Note that this is a coherent result we observed in Section
II. In case of multimedia streaming applications, utilizing NVRAM as a ϐile
system area exhibits the best performances. This is also coherent with the
trace characterization studies in the previous section.

Fig. 2. Storage accesses that occur on each storage area (a) Memory-intensive (b) Database (c) Multimedia streaming

2019 J. Kim et al. - Acceleration of Storage Performance 22

Fig. 3. Storage architecture with NVRAM (a) Traditional storage structure (b) Storage organization with NVRAM

In summary, our conclusion of utilizing NVRAMwith the per-
formance results in this section is as follows. For memory-intensive,
database, andmultimedia streaming applications, we recommendNVRAM
to adopt as a swapping, a journaling, and a ϐile system areas, respectively.
In case of database applications, however, one can alternatively utilize
NVRAM as a ϐile system area or a journaling area based on the size of
NVRAM provided.

IV. RELATEDWORK

A. File System Buffer Cache and Journaling

To narrow the widening speed gap between main memory and
secondary storage, modern operating systems use a ϐile system buffer
cache that stores requested ϐile blocks in a certain portion of main mem-
ory, thereby servicing subsequent requestswithout accessing slow storage
media. As traditional ϐile system buffer cache uses volatile DRAM, the ϐile
system may enter an inconsistent and/or out-of-date state when the sys-
tem crashes before the change is reϐlected to permanent storage. To over-
come this problem,modern ϐile systems adopt journaling or copy-on-write
transaction mechanisms that prevent data corruption via out-of-place up-

dates through periodic ϐlushes.
Instead of writing modiϐied data directly to its original location

in the ϐile system, journaling writes the changes to the journal area ϐirst
and then reϐlects them to the original location later. In this way, journaling
guarantees ϐile system consistency even when the system crashes in the
middle of storage updates [12]. Speciϐically, journaling groups data to be
updated atomically and manages them as a single transaction. When a
transaction is successfully written to the journal area, a commit mark is
placed on the journal area. This mark indicates that the transactionwill be
reϐlected to storage even in case of a system crash. The committed data are
periodically transferred to their permanent location by the checkpointing
operation. Unlike the journaling operation that is performed frequently
(e.g., every 5 seconds) to protect data from being corrupted, the interval
between checkpointing is relatively long (e.g., 5 minutes).

Journaling guarantees more reliable ϐile system states, but it gen-
erates additional storage writes. As a compromise between reliability
and performance, journaling ϐile systems often offer different journaling
modes such as metadata journaling and full-data journaling. In metadata
journaling mode, only metadata is journaled and regular data blocks are
directly ϐlushed to its original location. Data corruption is possible in this
mode.

Fig. 4. Using NVRAM as an in-memory ϐile system.

23 Journal of ICT, Design, Engineering and Technological Science 2019

Fig. 5. Total storage access latency as the NVRAM size is varied. (a) Memory-intensive (b) Database (c) Video streaming

In full-data journaling mode, the ϐile system journals both
metadata and regular data. This mode guarantees complete consistency
of a ϐile system, but incurs a signiϐicant performance penalty due to the
write-twice behavior of journaling. To balance between performance and
reliability, Ext4 and ReiserFS provide the ordered mode where only the
metadata is journaled but with regular data ϐlushes preceding metadata
journaling so as to reduce the chance of data corruption such as dangling
pointers [13, 14].

Another approach for supporting ϐile system consistency is the
copy-on-write technique. Copy-on-write creates a copy of data when the
data needs to be updated and all modiϐications are performed on this
copy. Thus, the original ϐile data blocks are preserved during modiϐica-
tions. Unlike journaling ϐile systems, copy-on-write ϐile systems do not
write modiϐications back to the original locations but the copies become
part of a new ϐile system tree. Generating a new version of a ϐile system
tree is performed periodically, and this is also called commit. Similar to
commit in journaling ϐile systems, all modiϐications are handled as a trans-
action and a commit is completed by generating a new version of a root
node. Btrfs and ZFS are examples of copy-on-write ϐile systems of which
the default commit period is set to 30 seconds. In copy-on-write ϐile sys-
tems, both regular data and metadata are protected [15].

B. Virtualization Structures in Cloud Systems
There are two types of virtualization in cloud systems, full vir-

tualization and para-virtualization, depending on the way guest systems
are supported [16]. Full virtualization runs a guest operating system as
an independent application on top of the host operating system. This is
advantageous in that the host and guest operating systems can be run
without modiϐications. In para-virtualization, the host is equipped only
with the hypervisor, which contains minimal interfaces to access hard-
ware, and a guest operating system is modiϐied to properly run on the
hypervisor. Para-virtualization can reduce the performance overhead of
virtualization, but it requires modiϐication of the guest operating system.
VirtualBox [17], VMware [18], and KVM [19] are examples of full virtual-
ization systems, while Xen is a well-known para-virtualization supporting
hypervisor [20].

In a fully virtualized system, the guest storage device is usually
managed as a single disk image ϐile on the host system. This allows the
allocation of the guest’s storage capacity upon an actual access, achieving
better space utilization. Supporting other functions such as snapshot and
migration of guest storage also becomes easier when managing storage as
a virtual disk ϐile rather than a raw disk. Both the guest and the host have

their own ϐile systems and buffer caches. The host regards each guest as a
user application and considers the buffer cache and the ϐile system of the
guest as user memory and a ϐile, respectively. Upon request of a storage
access, the guest ϐirst searches its own buffer cache and then, the hypervi-
sor sends the request to the host via a system call. Then, the host checks
its buffer cache and ϐinally, the request is delivered to storage. As host
and guest machines manage their own buffer caches, duplicated caching
may degrade space efϐiciency. However, with a large host cache that acts
as the second-level cache, guests can expect to reap performance beneϐits.
Speciϐically, if many virtualmachines, whose lifetime is difϐicult to estimate
coexist, then managing a large shared buffer cache on the host side can be
muchmore effective than allocating a large cache space for each individual
guest a priori [21]. Due to this reason, while there are options to support
host cache bypassing, hypervisors, by default, generally select to use host
caching [21, 17].

V. CONCLUSIONS AND IMPLICATIONS

In this article, we characterized the storage access traces in or-
der to determine the appropriate adoption of NVRAM for future storage
subsystems. Our ϐinding is that a bunch of storage accesses do not occur
on a common single storage area, but it is different for the types of appli-
cations executed. Speciϐically, journaling accesses dominate in database
applications, while swapping accesses dominate in memory-intensive ap-
plications. On the other hand, in multimedia streaming applications, ϐile
accesses dominate. With these ϐindings, we suggested the usage of NVRAM
formaximizing the performance improvement of future storage subsystem
design. Recent patents on NVRAM described various types of storage or-
ganizationswith NVRAM,meaning that NVRAM-based storage subsystems
are imminent [22, 23] The limitation of this article is thatwedonot provide
the automatic adoption of NVRAM for the target storage layer. For now, the
system administrator needs to conϐigureNVRAM for the target layer deter-
mined, and wewill further study on this direction. We hope that our study
will be helpful in designing future storage subsystems of cloud servers.

VI. ACKNOWLEDGMENT

This articlewas supported by the ICT R&DprogramofMSIP/IITP (2019-0-
00074, developing system software technologies for emerging new mem-
ory that adaptively learn workload characteristics) and also by the Basic
Science Research Program through the NRF grant funded by Korea Gov-
ernment (MSIP) (No. 2019R1A2C1009275).

2019 J. Kim et al. - Acceleration of Storage Performance 24

Declaration of Competing Interest

The authors declare that there is no conϐlict of interest.

References

[1] Y. Park andH. Bahn, ``Challenges inmemory subsystemdesign for fu-
ture smartphone systems,'' in 2017 IEEE International Conference on
Big Data and Smart Computing (BigComp). IEEE, 2017, pp. 255-260.

[2] S. Yoo and H. Bahn, ``An efϐicient page replacement algorithm for
pcm-based mobile embedded systems,'' in 2016 17th IEEE/ACIS
International Conference on Software Engineering, Artiϔicial Intelli-
gence, Networking and Parallel/Distributed Computing (SNPD). IEEE,
2016, pp. 183-188.

[3] E. Lee, H. Kang, H. Bahn, and K. G. Shin, ``Eliminating periodic ϐlush
overhead of ϐile i/o with non-volatile buffer cache,'' IEEE Transac-
tions on Computers, vol. 65, no. 4, pp. 1145-1157, 2014. doi: https:
//doi.org/10.1109/TC.2014.2349525

[4] Y. Park and H. Bahn, ``A working-set sensitive page replacement pol-
icy for pcm-based swap systems,'' Journal of Semiconductor Technol-
ogy and Science, vol. 17, no. 1, pp. 7-14, 2017.

[5] J. Kim and H. Bahn, ``Optimized adoption of nvm storage by consid-
eringworkload characteristics,'' JSTS: Journal of Semiconductor Tech-
nology and Science, vol. 17, no. 1, pp. 1-6, 2017. doi: https://doi.org/
10.5573/JSTS.2017.17.1.001

[6] E. Lee, J. Kim, H. Bahn, S. Lee, and S. H. Noh, ``Reducing write ampli-
ϐication of ϐlash storage through cooperative data management with
nvm,'' ACM Transactions on Storage (TOS), vol. 13, no. 2, p. 12, 2017.
doi: https://doi.org/10.1145/3060146

[7] Y. Park and H. Bahn, ``Management of virtual memory systems un-
derhighperformancePCM-based swapdevices,'' in39thAnnual Com-
puter Software andApplications Conference, vol. 2, 2015, pp. 764-772.

[8] A. van Renen, V. Leis, A. Kemper, T. Neumann, T. Hashida, K. Oe, Y. Doi,
L. Harada, and M. Sato, ``Managing non-volatile memory in database
systems,'' inProceedings of the 2018 International Conference onMan-
agement of Data. ACM, 2018, pp. 1541-1555.

[9] D. Liu, K. Zhong, X. Zhu, Y. Li, L. Long, and Z. Shao, ``Non-volatile
memory based page swapping for building high-performancemobile
devices,'' IEEE Transactions on Computers, vol. 66, no. 11, pp. 1918-
1931, 2017. doi: https://doi.org/10.1109/TC.2017.2711620

[10] E. Cheshmikhani, H. Farbeh, S. G. Miremadi, and H. Asadi, ``Ta-lrw:
a replacement policy for error rate reduction in stt-mram caches,''
IEEE Transactions on Computers, vol. 68, no. 3, pp. 455-470, 2018.
doi: https://doi.org/10.1109/TC.2018.2875439

[11] H. Farbeh, A. M. H. Monazzah, E. Aliagha, and E. Cheshmikhani, ``A-
cache: Alternating cache allocation to conduct higher endurance
in nvm-based caches,'' IEEE Transactions on Circuits and Systems
II: Express Briefs, 2018. doi: https://doi.org/10.1109/TCSII.2018.
2881175

[12] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
``Analysis and evolution of journaling ϐile systems.'' inUSENIXAnnual
Technical Conference, General Track, vol. 194, 2005, pp. 196-215.

[13] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
``The new ext4 ϐilesystem: current status and future plans,'' in Pro-
ceedings of the Linux symposium, vol. 2, 2007, pp. 21-33.

[14] R. H and ReiserFS. (2007) The best linux blogging software. [Online].
Available: https://bit.ly/2ZsDhiM

[15] Btrfs. Btrfs design. [Online]. Available: https://bit.ly/2ZgzzO2

[16] S. Hajnoczi, ``An updated overview of the qemu storage stack,'' Lin-
uxCon Japan, 2011. doi: https://doi.org/https://bit.ly/2NAlF2n

[17] Virtual box. [Online]. Available: https://bit.ly/1mQkaJC

[18] VMWare. Vmware tools for linux guests. [Online]. Available:
https://bit.ly/2PeZ9ZM

[19] KVM. Kernal virtual machine. [Online]. Available: https://bit.ly/
2I6Jc4n

[20] Xen Source. Progressive paravirtualization. [Online]. Available:
https://bit.ly/30BFl9L

[21] K. Wolf, ``A block layer overview,'' in KVM Forum, 2012.

[22] H. Bahn, E. Lee, and S. H. Noh, ``Device and method for integrated
data management for nonvolatile buffer cache and nonvolatile stor-
age,'' Google Patents, US Patent 9,563,566, 2017.

[23] E. Lee, H. Bahn, and S. H. Noh, ``Buffer cache apparatus, journaling
ϐile system and journaling method for incorporating journaling fea-
tures within non-volatile buffer cache,'' Google Patents, US Patent
App. 13/862,597, 2014.

https://doi.org/10.1109/TC.2014.2349525
https://doi.org/10.1109/TC.2014.2349525
https://doi.org/10.5573/JSTS.2017.17.1.001
https://doi.org/10.5573/JSTS.2017.17.1.001
https://doi.org/10.1145/3060146
https://doi.org/10.1109/TC.2017.2711620
https://doi.org/10.1109/TC.2018.2875439
https://doi.org/10.1109/TCSII.2018.2881175
https://doi.org/10.1109/TCSII.2018.2881175
https://bit.ly/2ZsDhiM
https://bit.ly/2ZgzzO2
https://doi.org/https://bit.ly/2NAlF2n
https://bit.ly/1mQkaJC
https://bit.ly/2PeZ9ZM
https://bit.ly/2I6Jc4n
https://bit.ly/2I6Jc4n
https://bit.ly/30BFl9L

